Answers for Practice Test 1

Laplace Transforms

- 1(a) After taking LT's and completing the square, $X(s) = \frac{s+2}{((s+2)^2+1)}$. Taking ILT, $x(t) = e^{-2t} \cos(t)$.
 - (b) $x(t) = g(t) * f(t) = \int_0^t e^{-x} \sin(x) f(t-x) dx$.
- (c) Just superimpose (add): $x(t) = e^{-t}\cos(t) + \int_0^t e^{-x}\sin(x)f(t-x)dx$. 2(a) T.F. = 1/(s+2). (b) $g(t) = \mathcal{L}^{-1}\{1/(s+2)\} = e^{-2t}$. (c) $y = g(t) *f(t) = \int_0^t e^{-2(t-x)}f(x)dx$. (c) Putting $f(x) = e^{-x}u(x-1)$ and noting that if t < 1, the integral is 0 since u(x-1) is 0, then for t > 1, we get

$$\int_0^1 e^{-2(t-x)} e^{-x} u(x-1) dx + \int_1^t e^{-2(t-x)} e^{-x} u(x-1) dx$$

but again the first integral is 0 and u(x-1) = 1 in the second integral, thus we get $y(t) = e^{-2t}(e^t - e)u(t - 1)$.

1.2Probability & Statistics

1.(a) Graphing the CDF, we see it has 4 jumps thus the r.v. takes on 4 values with nonzero probability = the height of the jump at that value:

- (b) $Prob(3 \le X \le 5.5) = p(3) + p(5) + p(5.5) = .9$; Prob(X = 3.5) = 0. (c) $E(X) = \sum_{all\ x} xp(x) = 4.05$ and $Var(X) = \sum_{all\ x} x^2p(x) E(X)^2 = 0$
- 2. (a) T is continuous because F(t) is continuous note at $t=0, 1-e^{t/1000}=$ 0.

$$f(t) = F'(t) = \left\{ \begin{array}{cc} 0 & \text{if } t < 0 \\ \frac{1}{1000} e^{-t/1000} & \text{if } t > 0, \end{array} \right.$$

- (c) $Prob(T) \ge 500$) = 1 F(500) = .606531, Prob(T < 1000) = F(1000) = .632121 and Prob(500 < T < 700) = F(700) - F(500) = .109945.
- 3(a) You can't use the TI92 program, bprob() because you don't know p. But from the binomial, if X = number of defective (success = defective), then $Prob(X = 100) = p^{100}$
- (b) Prob(at least one nondefective) = 1-p¹⁰⁰. (c) The Prob(X < 2) = .9999either from bprob() or directly computing from binomial formula with x=0,1,2 and adding.
- 4 (a) Since T is the sum of 100 independent r.v.'s it is approximately normal by the Central Limit Theorem. (b) $E(T) = 100 \times 1.5 = 150$ min.'s. Var(T) = $100 \times 1 = 100 \text{ min}^2$. Thus $T \sim N(150, 100)$.
- (c) $Prob(T \le 165) = .933193$ (using zprob() with M = 150, S = 10, $X1 = -\infty$, X2 = 165). (d) To find t_0 , such that $Prob(T \ge t_0) = .9608$,

we standardize, i.e., take Z = (T - 165)/10 and using the normal table together with symmetry get that $Prob(Z \geq z_0) = .9608$ implies $z_0 = -1.76$ and thus

 $t_0 = 165 + z_0 * 10 = 132.4$ min.'s. $5(a) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$ implies here that

$$\int_{-1}^{1} b \int_{-1}^{1} kx^{2}y^{2} dx dy = 4k/9 = 1 \text{ Thus } k = 9/4.$$

(b)
$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy = \int_{-1}^{1} (9/4)x^2 y^2 dy = (3/2)x^2 \text{ if } -1 \le x \le 1$$

Thus
$$f_X(x) = \begin{cases} (3/2)x^2 & if -1 \le x \le 1 \\ 0 & elsewhere \end{cases}$$
.

$$f_{X}(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{-1}^{1} (9/4)x^{2}y^{2} dy = (3/2)x^{2} \text{ if } -1 \le x \le 1.$$

$$\text{Thus } f_{X}(x) = \begin{cases} (3/2)x^{2} & \text{if } -1 \le x \le 1 \\ 0 & \text{elsewhere} \end{cases}$$

$$\text{Similarly, } f_{Y}(y) = \begin{cases} (3/2)y^{2} & \text{if } -1 \le y \le 1 \\ 0 & \text{elsewhere} \end{cases}$$

- 6. (a) Since we want a 95% 2-sided CI 1- α = .95 and so $z_{\alpha/2}=z_{.025}=1.96$ either from tables for the normal or from memory. Thus since $\sigma = 3.68$, we get
- 9. $44 (1.96 * 3.68/\sqrt{50}) \le \mu \le 9.44 + (1.96 * 3.68/\sqrt{50})$ or $8.41996 \le \mu \le 9.44 + (1.96 * 3.68/\sqrt{50})$ 10.46.
- (b) For a 1-sided 95% CI, $z_{\alpha}=z_{.05}=1.645$ either from tables for the normal or from memory. Thus

 $\mu \leq 9.44 + (1.645*3.68/\sqrt{50}) \text{ or } \mu \leq 10.2961. \text{ For } 99\% \text{ confidence, } 1-\alpha = .99$ and $z_{\alpha/2}=z_{.005}=2.575$ - either from tables for the normal or from memory. Thus $n = \left(\frac{2.575 \times 3.68}{2}\right)^2 = 22.4486$. So we take n =23.

1.3 Complex Numbers and Taylor Series

 $1(a)(-32)^{1/5} = 32^{1/5}e^{i(\pi+2k\pi)/5}, \ k = 0, 1, 2, 3, 4. \text{ For } k = 0: \ \frac{\sqrt{5}+1}{2} + \frac{\sqrt{2(5-\sqrt{5})}}{2}i; \\ k = 1: \ \frac{1-\sqrt{5}}{2} + \frac{\sqrt{2(5+\sqrt{5})}}{2}i; \ k = 2: \ -2; \ k = 3: \ \frac{1-\sqrt{5}}{2} - \frac{\sqrt{2(5+\sqrt{5})}}{2}i; \ k = 4: \\ \frac{\sqrt{5}+1}{2} - \frac{\sqrt{2(5-\sqrt{5})}}{2}i. \\ \text{(b) } (-i)^{1/2} = e^{i(-\pi/2 + 2k\pi)/2}, k = 0, 1. \text{ For } k = 0: \ \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i; \ k = 1: \\ \frac{\sqrt{3}}{2} + \sqrt{3}i + \sqrt$

 $\frac{-\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$.

- (c) In (a) it's a root of $z^5 + 32 = 0$, thus complex conjugate pairs. In (b) it's a root of $z^2 + i = 0$, thus not necessarily complex conjugate pairs (and they turn out not to be as above shows!).
- (d) $Re(\frac{1+i}{1-i}) = 0$. (e) Putting z=2 in given polynomial gives k = -7/4. But then dividing $z^3 - 7z^2/4 - z + 1$ by z - 2 either by hand or with TI92 gives for the quotient $\frac{4z^2z-2}{4}$. But substituting z=2 into this does not give 0 so z=2 is not a double root.
- $2(a) \frac{1}{1-x} = 1 + x + x^2 + x^3 + ..., -1 < x < 1$, put x^2 in for x and multiply

$$\frac{x}{1-x^2} = x + x^3 + x^5 + \dots = \sum_{n=1}^{\infty} x^{2n-1}$$

with interval of convergence -1 < x < 1.

(b) Given y(1) = 0, y'(1) = -1, we find y''(1) = 0, but then y''' = 0xy' + y, y'''(1) = -1. Continuing differentiating and substituting in x=1, gives

$$y^{(4)}(1) = -2, y^{(5)}(1) = -1,$$
 so $y(x) = -(x-1) - (x-1)^3/3! - 2(x-1)^4/4! - (x-1)^5/5! + \dots$

1.4 Fourier Analysis

1. (a)
$$2L = 2\pi$$
 so $L = \pi$. $c_0 = 1/(2\pi) \int_{-\pi/2}^{\pi/2} dt = 1/2$; $c_n = 1/(2\pi) \int_{-\pi/2}^{\pi/2} e^{-int} dt = \frac{1}{n\pi} \sin(\frac{n\pi}{2})$. Thus
$$f(t) = \frac{1}{2} + \frac{1}{\pi} \sum_{\substack{n = -\infty \\ n \neq 0}}^{\infty} \frac{\sin(n\pi/2)}{n} e^{int}.$$
 (b)

Figure 1: The graph of f(t).

At $t = \pi$ CFS $\rightarrow 0$ and at $t = -3\pi/2$, CFS $\rightarrow 1/2$. (c)

$$CFS = \dots + \frac{1}{-3\pi}e^{-3it} + \frac{-1}{-\pi}e^{-it} + \frac{1}{2} + \frac{1}{\pi}e^{it} + \frac{-1}{3\pi}e^{3it} + \dots$$

(d) Note that CFS coefficients are all real so their angles are always either 0 or

2 (a)
$$y_p(t) = \sum_{n=-\infty}^{\infty} \frac{c_n}{-4n^2+4in+1} e^{2int}$$
. (b) $y_c(t) = Ae^{-t} + Bte^{-t}$

(c)
$$\int_0^\infty \frac{\sin(2\omega)}{\omega} d\omega = \pi/2$$
.

π. 2 (a) $y_p(t) = \sum_{n=-\infty}^{\infty} \frac{c_n}{-4n^2+4in+1} e^{2int}$. (b) $y_c(t) = Ae^{-t} + Bte^{-t}$. 3(a) $f(t) = \int_{-\infty}^{\infty} \frac{\sin(2\omega)}{\pi\omega} e^{i\omega t} d\omega = CFI$. (b) At t = 0, CFI $\to 1$ and at t = -1/2, CFI $\to 1/2$. (c) $\int_0^{\infty} \frac{\sin(2\omega)}{\omega} d\omega = \pi/2$. 4. (a) Taking FT's, $G(\omega) = \frac{1}{(i\omega)^2 + 8i\omega + 15}$ since $\mathcal{F}\{\delta(t)\} = 1$. But using partial fractions, $G(\omega) = \frac{1/2}{i\omega + 3} + \frac{-1/2}{i\omega + 5}$. Thus taking IFT's, we get $g(t) = (1/2)(e^{-3t} - e^{-5t})u(t)$ $(1/2)(e^{-3t} - e^{-5t})u(t).$

(b)
$$y(t) = g(t) * f(t) = (1/2) \int_{-\infty}^{\infty} (e^{-3x} - e^{-5x}) u(x) f(t - x) dx$$
.